Skip to main content
Prerequisites: - Python 3.10 or higher - pip, poetry or uv package manager
  • API keys for your chosen LLM providers
Follow these steps to set up your development environment for Flo AI.
1

Install Flo AI

Install Flo AI using pip, poetry or uv:
# Using pip
pip install flo-ai

# Using poetry
poetry add flo-ai

#Using uv
uv add flo-ai
2

Set up environment variables

Configure your API keys for LLM providers:
# OpenAI
export OPENAI_API_KEY="your-openai-key"

# Anthropic
export ANTHROPIC_API_KEY="your-anthropic-key"

# Google Gemini
export GOOGLE_API_KEY="your-google-key"

# For Google Vertex AI
export GOOGLE_APPLICATION_CREDENTIALS="path/to/service-account.json"
export GOOGLE_CLOUD_PROJECT="your-project-id"
3

Verify installation

Test your installation with a simple agent:
import asyncio
from flo_ai.agent import AgentBuilder
from flo_ai.llm import OpenAI

async def test_installation():
    agent = (
        AgentBuilder()
        .with_name('Test Agent')
        .with_prompt('You are a helpful assistant.')
        .with_llm(OpenAI(model='gpt-4o-mini'))
        .build()
    )

    response = await agent.run('Hello, world!')
    print(f'Agent response: {response[-1].content}')

asyncio.run(test_installation())

Testing

Run the test suite to ensure everything is working correctly:
# Run all tests
pytest

# Run specific test files
pytest tests/unit-tests/test_agent.py

# Run with coverage
pytest --cov=flo_ai

Project Structure

Understanding the Flo AI project structure:
flo_ai/
├── flo_ai/                 # Core package
│   ├── agent/              # Agent 
│   ├── arium/              # Workflow orchestration
│   ├── formatter/          # Format parsers
│   ├── helpers/            # Helper utilities
│   ├── llm/                # LLM provider integrations
│   ├── models/             # Data models
│   ├── telemetry/          # Observability
│   ├── tool/               # Tool framework
│   └── utils/              # Utility functions
├── docs/                   # Documentation
├── examples/               # Example implementations
└── tests/                  # Test suite
    ├── integration-tests/  # Integration tests
    └── unit-tests/         # Unit tests

Contributing

Learn how to set up your development environment and submit changes to the Flo AI project.

Prerequisites

Before setting up for development, ensure you have the following tools installed:
  • uv: Fast Python package installer and resolver. Install uv
  • pnpm(optional): Package manager for Node.js. Install pnpm

Setting up for development

  1. Fork the wavefront repository
  2. Clone your fork: git clone https://github.com/your-username/wavefront.git
  3. Enable workspace mode to start development (Recommended)
  4. Run the install-dep-local.sh script in the root directory, or navigate to the flo_ai workspace and run uv sync
  5. Start a new terminal in the flo_ai workspace
  6. Start contributing!

Submitting changes

  1. Create a feature branch: git checkout -b feature/your-feature
  2. Make your changes and add tests
  3. Run tests: pytest
  4. Commit with conventional commits: git commit -m "feat: add new feature". Ensure the pre-commit hook runs without any errors
  5. Push and create a pull request

Troubleshooting

If you encounter import errors, ensure you’re using Python 3.10+ and have installed all dependencies:
pip install -r requirements.txt
# or
poetry install
# or
uv sync
Verify your API keys are correctly set:
echo $OPENAI_API_KEY
echo $ANTHROPIC_API_KEY

Need Help?